
https://doi.org/10.1038/s41592-022-01744-4

Correspondence

JIPipe: visual batch processing for ImageJ

In the format provided by the
authors and unedited

https://doi.org/10.1038/s41592-022-01744-4

Supplementary information

Contents

1 Comparison with similar tools ... 2

1.1 KNIME .. 2

1.2 Icy Protocols .. 2

1.3 ModularImageAnalysis (MIA) .. 2

1.4 Grappa / MiToBo toolbox .. 3

1.5 TAPAS .. 3

2 JIPipe dependencies .. 4

3 JIPipe system requirements .. 5

4 Symbiosis of ImageJ and JIPipe ... 5

4.1 Standardized output format .. 5

4.2 Overview of JIPipe operations ... 6

4.3 Extension API ... 7

5 Hallmarks of JIPipe by representative applications ... 8

5.1 Bacterial growth measured in fluid droplets ... 8

5.2 Nanoparticle delivery analysis in liver ... 10

5.3 Confrontation assays ... 12

5.4 Track analysis of unlabeled nematodes .. 15

5.5 Kidney status check via glomeruli counting .. 16

6 JIPipe user interface and data model .. 18

7 Online training and documentation resources ... 24

7.1 User guide and tutorials .. 24

7.2 Java API documentation .. 26

7.3 Data and JSON API documentation ... 27

8 References ... 28

1 Comparison with similar tools
The reduction in the complexity of designing image analysis workflows is the aim of various tools,

including the KNIME1 platform, the protocol feature of Icy2, ModularImageAnalysis3 (MIA), the Grappa

feature of the MiToBo toolbox4, and TAPAS5. Here we will briefly compare these programs with JIPipe.

1.1 KNIME
KNIME is an established visual programming language designed to simplify the creation of scientific

data processing workflows. Due to community extensions, the software is also capable of performing

image processing tasks via a custom library, as well as via the integration of ImageJ2 operations and

ImageJ1 macros. Both JIPipe and KNIME provide nodes for path processing, read-access to OMERO

servers, and the integration of script languages.

Regarding the image analysis functionality, KNIME relies on the integration of ImageJ2 integration,

ImageJ1 macros, and community-developed image processing nodes, whereas JIPipe also wraps

ImageJ1 and Fiji functionalities into a unified format via its dedicated nodes.

JIPipe and KNIME are both built around a table-based data model that simplifies the adoption of batch

processing. The main difference is how the execution of algorithms with multiple inputs are

implemented: in KNIME, nodes generally consume one input from the graph, even if the underlying

workload requires two or more data items. Instead, these are sourced from various table columns. The

generated outputs then are stored in a different column of the same table row. JIPipe encourages the

implementation of multiple data input slots, which is made possible because of a constrained table

model that ensures the presence of a singular “data” column that is annotated with text columns. To

group multiple inputs into a batch of data, JIPipe utilizes the set of text annotations, which is similar to

how the table is consumed by KNIME-based nodes.

Another difference in the node implementation is the handling of parameters: while both JIPipe and

KNIME differentiate between data and algorithm parameters, KNIME nodes offer the processing of

“flow variables” that allow the storage of metadata outside the data table with the purpose of adapting

parameters. JIPipe implements this concept via its “adaptive parameters” that allow to generate

settings based on the text annotations of the currently processed data.

1.2 Icy Protocols
The Icy software for bioimage analysis comes with a visual programming language termed “Protocols”

that provides users with the ability to graphically design batch processing workflows using the

functionality of Icy and ImageJ.

While both Icy and JIPipe implement a graph-based programming environment, they are based on

entirely different modes of data management. JIPipe differentiates between data and algorithm

parameters and consequently only display input and output slots for data. Icy instead displays all data

and algorithm parameters within the node GUI, accompanied with appropriate editor controls. Batch

processing is then implemented via dedicated loop nodes that execute the set of successor nodes for

each data set. The data management implemented in Icy is a contrast to JIPipe’s model, where nodes

receive multiple data items organized into a table.

1.3 ModularImageAnalysis (MIA)
MIA is a modular framework for the design of batch analysis workflows that already comes with over

200 modules that encapsulate common image analysis methods. Its broad focus to provide an

alternative to the development of ImageJ macros is shared with JIPipe.

A difference is in the choice of implementation: while JIPipe represents workflows as a flowchart, the

developers of MIA elected to represent a program as list of consecutive operations, thus simplifying

the implementation of linear pipelines comparted to a flowchart-model; with the drawback of

occluding branching and referencing to early steps in the workflow.

Another difference between JIPipe and MIA is the data management implementation: MIA provides

standardized input and output modules that act as central points for detecting inputs and writing the

results. To ensure flexibility with different data setups, the modules are provided with a variety of

parameters, for example, to filter for file names. JIPipe does not provide all-in-one nodes for handling

inputs and outputs, but a selection of path processing nodes that provide users with the tools to adapt

the input and output handling to the needs of specific projects. For example, JIPipe allows users to

reference a set of directories, store relevant metadata, and recursively detect images via custom

patterns for each directory, while preserving the metadata. Both JIPipe and MIA support the storage

of metadata in form of global variables as implemented in MIA and data table columns in JIPipe.

MIA and JIPipe features include the popular TrackMate and Weka filter plugins. In the case of any

missing ImageJ functionality, ImageJ macros and Jython scripts can be integrated. As additional

features, JIPipe introduces the ability to communicate with OMERO servers, cellpose and omnipose

nodes, and the ability to run native Python and R scripts via the JIPipe environment feature.

1.4 Grappa / MiToBo toolbox
Grappa is the visual language of the MiToBo toolbox plugin and provides a mode of connecting multiple

Alida modules into a pipeline, thus supplementing the feature set of ImageJ with additional functions.

Similar to JIPipe, Grappa utilizes a flow chart model to represent its workflows, thus simplifying the

implementation of branching and parallel pipeline paths. A difference between the graph models is

that Grappa exposes all parameters of a node as input, while JIPipe only creates slots that consume

parameters that are of tabular data.

Due to its focus on providing means to connect MiToBo functions, Grappa relies on the native batch

processing capabilities of ImageJ, whereas JIPipe provides full flexibility by using its own set of path

processing nodes that are compatible with the table-based batch processing mode of our software.

1.5 TAPAS
TAPAS is a plugin for ImageJ that greatly simplifies the development of linear image analysis pipelines

for multidimensional images.

Unlike JIPipe, Grappa, and MIA, the plugin TAPAS represents programs via a simple and easy to

understand scripting language, thus making workflows readable even if the plugin is not available on

the current system.

To simplify the development of scripts, TAPAS comes with a feature termed “TAPAS Menu” that allows

users to select an operator and interactively generate valid code with user-defined parameters. The

set of operators is based features of the 3D ImageJ Suite6 plus a selection of commonly used ImageJ

commands, including co-localization and particle detection.

Both TAPAS and JIPipe provide batch processing capabilities but differ greatly in how the processing

and data management are implemented. To handle inputs and outputs, JIPipe provides users with path

processing and exporter nodes, as well as the standardized file-based output format. TAPAS follows a

data management model that is similar to the OMERO7 image database organization, allowing TAPAS

scripts to work both with remote and local data storage. JIPipe communicates with OMERO via a set

of dedicated nodes that can be easily built into a pipeline when remote storage is desired. JIPipe’s

standardized data format will also allow the natural integration of OMERO format in its upcoming

versions.

2 JIPipe dependencies
JIPipe is written in Java version 8 and utilizes libraries provided by SciJava (https://scijava.org/) . The

full list of required Java libraries and external tools is shown in Supplementary Table 1. JIPipe is open

source and licensed under BSD-2-Clause license.

Dependency Version Author

Bio-Formats 6.5.1 Linkert et al.8

CLIJ2 2.0.0.14 Haase et al.9

Feature_Detection 2.0.2 Fiji.sc10

FeatureJ 2.0.0 Erik Meijering11

Flexmark 0.62.2 Vladimir Schneider

Guava 26.0-jre Google Inc.

ImageJ 2.1.0 Rueden et al.12

ImageScience 3.0.0 Erik Meijering

ImgLib2 2.0.0-beta-46 Pietzsch et al.13

Jackson 2.11.0 FasterXML

Javaluator 3.0.3 Jean-Marc Astesana

JFreeChart 1.5.0 JFree.org

JFreeSVG 3.4 JFree.org

JGraphT 1.4.0 Barak Naveh

JUnit 5.7.0 JUnit Team

Jython 2.7.2 Jython Project

MorphoLibJ 1.4.1 Legland et al.14

MPICBG 1.3.0 Stephan Saalfeld

MSLinks 1.0.5 Dmitrii Shamrikov

MTrackJ 1.5.4 Erik Meijering

Multi-Template-Matching 1.1.5 Thomas, Gehrig15

OMERO 5.5.8 Allan et al.7

RandomJ 2.0.0 Erik Meijering

Reflections 0.9.12 ronmamo

Scijava 29.2.1 Rueden et al.16

SLF4J 1.7.9 QOS.ch

SwingX 1.6.1 SwingLabs

Trove4J 3.0.3 Rob Eden

Apache Commons Exec 1.3 The Apache Software
Foundation

Apache Commons Compress 1.9 The Apache Software
Foundation

Apache POI 5.2.0 The Apache Software
Foundation

JNA 4.5.2 Timothy Wall, Matthias
Bläsing

R 4.1.2 R Core Team17

Python 3.8 Python Software
Foundation18

cellpose 2.1.0 Stringer et al.19

omnipose 0.2.1 Cutler et al.20
Supplementary Table 1 | List of libraries and external tools used by JIPipe.

https://scijava.org/

3 JIPipe system requirements
JIPipe was designed to run on any operating system supported by ImageJ and tested on Linux (Ubuntu
22.04), Windows (Windows 10), and macOS (macOS Monterey 12). We must note that due to our
limited access to test macOS, we can’t ensure that all features will work as expected on Apple
computers. We are open to contributions from the community. We recommend running our software
on hardware with at least 8 GB of system memory and on a 64-bit operating system. To execute all
example pipelines provided with this manuscript, at least 16 GB of memory are required. To utilize
GPU processing functionality provided by CLIJ2, a graphics card supporting OpenCL 1.2 or higher and
capacity to store the analyzed images must be available.

4 Symbiosis of ImageJ and JIPipe

4.1 Standardized output format
JIPipe writes results in a standardized format that allows results and annotations to be imported back

into JIPipe. (see Supplementary Figure 1). The user only must provide the output folder. Here, JIPipe

creates a sub-folder “analysis” that contains directories that correspond to the nodes in the graph. The

name of these node folders is generated automatically and with de-duplication based on the user-

customizable name of the node. This ensures that no data is overwritten, while users are still able to

navigate through the results manually. Each node folder contains sub-directories that correspond to

the output slots. JIPipe automatically ensures during the creation of these slots that they are

compatible to filesystems and unique. Each of those slot folders contains metadata in a file “data-

table.json”. This file stores information about the data stored within the slot, annotations, expected

data types, and true data types. Each row is also indexed with a unique identifier. Data is stored in

sum-directories of the slot folder that correspond to this unique row ID. The format is defined by the

stored data type and allows import back into JIPipe, as the metadata table provides all necessary info

to direct JIPipe to the correct import routine. To improve the user experience, the metadata table is

also present in CSV format that can be opened in standard software.

JIPipe makes use of this powerful result model by offering nodes that can import such results back into

another analysis. The user only must provide the slot folder to allow JIPipe to import all data and

metadata. This allows for postprocessing analyses that combine and structure results from multiple

analyses.

To improve the usability of JIPipe, the standardized output format can be exported into a more

commonly used where file names contain metadata. This feature is available within the cache browser,

result viewer, and as dedicated node. This metadata-based export cannot be directly imported back

into JIPipe.

Supplementary Figure 1 | Standardized result export format. JIPipe writes outputs in a standardized format. The user only
must define the output directory (blue folder). JIPipe automatically generates a filesystem hierarchy based on the unique
node Ids, output slot names, and row number in the output table (red folders).

4.2 Overview of JIPipe operations
JIPipe comes with a set of standard libraries that contain extensions for image analysis and other

functions. It currently includes over 1000 nodes and over 120 data types. The function of the library

components is briefly described here:

Filesystem library. A library of nodes that allow querying and manipulating file systems. It allows, for

example, to search for files in a specified directory.

Annotation library. This library contains nodes that allow manipulation of data annotations.

Multi-parameter library. The core library provides the functions to execute a node on multiple

parameter sets but lacks nodes to define such parameter sets. This library adds this functionality.

String library. A library that provides string data types (e.g., XML or JSON data).

ImageJ data type library. This library integrates commonly used ImageJ functions, such as images,

tables, and ROI management. Image data types are available in variants that restrict the bit depth or

the dimensionality. Automated conversion is applied to ensure that the constraints are satisfied, for

example, 8-bit grayscale images are converted into RGB images automatically. As each of these modes

are available as separate data type, node developers and users can exactly control and review the

inputs and outputs of a node, which improves usability and reduces the number of errors. This library

also includes support for Bio-Formats3.

ImageJ1 algorithm library. Commonly used commands from ImageJ1 are integrated via this library. It

provides functions to process images and ROI. The library also includes a macro node that can execute

ImageJ macro code inside a JIPipe node.

ImageJ2 algorithm library. ImageJ2 operations are automatically included via a translation layer.

CLIJ integration library. This library integrates functions from CLIJ29 into JIPipe. To improve

performance, it provides a separate data type that encapsulates a GPU image and provides conversion

from and to ImageJ images for ease of use. The functions were generated in an automated fashion via

a Python script.

Table library. A library containing nodes that apply commonly used table operations (e.g., merging

rows, or sorting). This library also adds data types that encapsulate only one table column for more

advanced operations.

Forms library. Users can create interactive nodes that prompt the user to provide an input to the

current data processing. There is an expandable set of such predefined input types available: Numeric

inputs, check boxes, text fields, a choice of predefined values, and selecting a file system path. Multiple

of these inputs can be connected into a form that is displayed for each processed data item. The

standard forms library then writes user inputs into the annotations of the provided data. The library is

modularized, which allows more complex form types, such as letting users draw or modify a mask

interactively.

OMERO integration. JIPipe provides an integration into OMERO7 that allows to query the database and

download or upload images.

Python integration. ImageJ provides support for Python scripts via Jython (https://www.jython.org/)

and a standard Python setup. The difference between Jython and Python is that Jython has access to

all Java data types, including ones from ImageJ and JIPipe – while it is currently not possible to integrate

C-based packages, such as Numpy or Tensorflow. To allow the integration of such powerful tools, JIPipe

provides an environment system to integrate any existing Python environment. To increase usability

of this approach, JIPipe also comes with one-click installers to setup new Python environments via

Conda.

Python scripts communicate with JIPipe via a file-based API. JIPipe automatically includes a Python

library into Python scripts to make use of any node-specific functionality, such as accessing inputs and

writing outputs.

R integration. JIPipe utilizes an environment system similar to Python environments to integrate R

scripts. Similar to Python, users will find nodes to integrate custom R scripts into the pipeline. Again,

JIPipe provides a file-based API to communicate data and metadata with the R script.

Cellpose integration. We included the ability to run Cellpose into JIPipe. As Cellpose is a Python-based

tool, we make use of the Python integration functionality. JIPipe supports segmentation with Cellpose

on the provided pretrained cytoplasm/nuclei models or a custom model. We also included the ability

to train new models – either from scratch or by retraining a custom or pretrained model.

Utility library. Miscellaneous functions, like interaction with JIPipe outputs, manual data conversion,

and data table sorting.

4.3 Extension API
All non-core functionality is split into dedicated Java libraries that are usually distributed with the core

library but can be left out for specialized distributions of JIPipe that focus on other usages like non-

image-analysis workflows. If only the core library is loaded, JIPipe will contain no usable data types and

nodes. Image analysis functions are provided in dedicated libraries as extensions. Extensions for JIPipe

are SciJava plugins that provide the necessary metadata for JIPipe, for example the name, authors, and

dependencies, and a register() function that executes all necessary steps to add additional

functionalities. Following functions can be added via this function:

https://www.jython.org/

Data types. Java developers can add new data types into JIPipe. Data is organized into tables and

annotated with additional string columns. To allow for automated reading and saving, data types must

provide functions to export itself into a folder and be imported from an exported directory.

Additionally, data types must be able to be displayed in the GUI, via a display() function and an

optional preview method. Each data type has a unique identifier string that allows safe serialization of

user-customizable slot configurations.

Node types. Node types are Java classes that contain the workload function. Slots are either added via

Java annotations or created in the object constructor. Like data types, they have a unique identifier.

Data type conversions. JIPipe automatically applies trivial conversions (e.g., from a child class to one

of its parent classes). Other conversions (e.g., converting a plot to an image) must be handled by a

dedicated converter object that can be registered into JIPipe. The converter creates an edge within the

conversion graph, which allows higher-order conversions with multiple steps.

Data type display operation. Each data object comes with a default function to display the data in the

GUI (e.g., displaying an image in ImageJ). Additional display operations can be registered via an

extension.

Data type import operation. An import operation imports data from a JIPipe result folder and displays

it to the user. An example is the import and display of ROI.

Parameter type. Developers can register custom parameter types. Each parameter type requires a

unique identifier, required for serialization of user-defined parameters, and a user interface.

Expression function. The set of functions available in expression parameters can be further expanded.

Table column operation. Independent of expression functions, there exist functions that apply one-

to-one or integrating operations on table columns. This set can be expanded. Such operations are

automatically available inside expressions.

Menu extensions. Developers can create custom menu entries for various uses. They can choose

between multiple locations (e.g., “Project” menu or “Tools” menu).

An alternative to Java extensions is extensions provided as JSON files. They can be created via a user-

friendly GUI from existing pipelines or sets of nodes and allows non-developers to create custom

node types, akin to ImageJ2 scripts or macros. Such extensions are loaded via a “JSON Extension

Loader” Java extension that automatically scans the ImageJ plugins directory for valid extensions.

5 Hallmarks of JIPipe by representative applications
Here we describe the details of the JIPipe application that were utilized to illustrate the wide

applicability of JIPipe in the Results. The examples are the following:

a) Bacterial growth inside fluid droplets

b) Nanoparticle delivery in liver

c) Host-pathogen interactions

d) Nematode viability test

e) Kidney status check via glomeruli counting

5.1 Bacterial growth measured in fluid droplets
Picoliter droplets are miniature bioreactors used in microfluidic experiments to test various growth

conditions on bacteria21–23. Due to the extremely large number of droplet images, the native batch-

processing and parallelization features made JIPipe an ideal candidate to quantify the bacterial growth

in potentially millions of droplets21 (Supplementary Figure 2). The workflow was successful in finding

the targeted droplet, identify its inner zone and detect bacterial growth (Figure 1c). In this case,

microfluidic droplets of approximately 100 micrometer diameter were filled with a solution containing

E. coli bacteria and the bacterial growth was observed via brightfield transmitted light microscopy21.

The following JIPipe workflow determines the droplets that show bacterial growth. When compared

with a set of 1500 images with manual annotations (growth vs. no growth), the JIPipe workflow

produced 100% agreement with the ground truth.

The processing workflow starts with scanning the input file folder(s) and annotating the internal JIPipe

table with the folder names and the image identifiers. It is sufficient to drop only the top folder into

the flow (node “Folder list”) because the subsequent nodes will automatically extract the rest of the

information, e.-g. the subfolders (here we use the Recursive list option in the Parameters setting to

handle multiple layers of subfolders automatically). In the “List files” node we search for files that are

of the CZI type by introducing a filter for the absolute path. After adding the image names to the

annotation table, we provide another filtering opportunity by the “Filter paths” node, which can be

useful when limiting the analysis to a subset of images during testing the analysis workflow.

Supplementary Figure 2 | Compartment graph of the classical and Cellpose-based image analysis approach to identify
microfluidic droplets that show bacterial growth inside. For the node arrangement within individual compartments, see the
supplied JIP project file "Droplets.jip" and the detailed nodes map “compartments-figure-droplets.png” in Supplementary
Materials.

In detail:

(i) Preprocessing:

o Read the images into memory and annotate the data table as described in

Supplementary Information 4.1

o Pass the results to the Segmentation and Cellpose compartments

(ii) Segmentation:

o Hessian segmentation(parameters 2, “Largest”, 2)

o Gaussian blur (2 px)

o Auto threshold (Triangle algorithm)

o Morphological hole filling

o Distance transform watershed

o Morphological opening (10 px)

o Morphological erosion (7 px)

o Create ROI and split multiple droplets to create the outer line

o Morphological erosion (5 px)

o Create ROI and split multiple droplets to create the inner line

o Pass the results to the Quantification compartment

(iii) Quantification:

o Filter ROI by statistics (Area above 1000)

o Calculate variance (1 px)

o Auto threshold (Otsu algorithm)

o Extract ROI measurements (Area, Area fraction, Integrated density)

o Create Growth column (percentage Area above 0.5 is classified as growth = 1)

o Pass the results to the Visualization compartment

(iv) Visualization:

o Convert growth areas into ROIs

o Merge raw image with growth area ROIs

o Convert inner line of droplets into ROIs

o Merge raw image with inner line ROIs

(v) Cellpose:

o Access the TL images from Preprocessing

o Run Cellpose segmentation

o Object diameter 120 px

o Use pretrained Cellpose model “Cytoplasm”

o Thresholds: 2 (probability), 0.8 (flow)

o Filter ROIs by Roundness > 0.7

o Morphological opening (10 px)

o Morphological erosion (1 px for outer line, 7 px for inner line of droplets)

o Turn masks to ROIs and split them

(vi) Quantification Cellpose: see Quantification

(vii) Visualization Cellpose: see Visualization

5.2 Nanoparticle delivery analysis in liver
JIPipe’s native batch processing ability and built-in time series algorithms were of particular advantage

in a project using nanoparticles (NPs) to counteract liver fibrosis caused by non-alcoholic fatty liver

disease. NPs are utilized to deliver precisely targeted agents to the liver tissue24. The analysis of such

microscopy data requires the identification of various liver components including hepatocytes, liver

sinusoidal endothelial cells (LSECs), sinusoids, and canaliculi. The segmentation was carried out

without the help of specific labeling, and the extraction of time series information about the uptake

and extrusion of the NP-delivered agents. The extensive set of morphological filters available in JIPipe

were invaluable in identifying the various components of the liver without specific labelling, based

solely upon the autofluorescence signal (Supplementary Figure 3). The resulting high-fidelity

segmentation of the LSECs, canaliculi and sinusoids (Figure 1c) indicate the precision and utility of the

JIPipe processing framework.

The live-animal microscopy experiments were described in Muljajew et. al., 202125. Micelle

nanocarriers were injected into the circulatory system of the mouse vie the tail veins. Two-photon

microscopy was utilized to image the cargo delivered by the micelles to the hepatocytes, sinusoids,

canaliculi and liver-sinusoidal endothelial cells the time-series images were analyzed by the JIP

protocol “LiverAnalysis.jip” (see Supplementary Materials)

Supplementary Figure 3 | Compartment graph of the analysis protocol for liver drug delivery assay, designed to quantify the
spatio-temporal distribution of nanoparticle-delivered cargo to various parts of the murine liver. For the node arrangement
within individual compartments, see the supplied JIP project file " Liver.jip" and the detailed nodes map “compartments-
figure-liver.png” in Supplementary Materials.

The workflow was based on principles similar to those shown in the previous chapter. The processing

consisted of six compartments: i) file handling, ii) blood vessel analysis, iii) hepatocyte analysis,

iv) canaliculi analysis, v) the analysis of liver sinusoidal endothelial cells (LSECs), and vi) postprocessing.

In detail:

(i) Images were read into memory and the data table was annotated as described in

Supplementary Information 4.1

(ii) Vessel analysis:

o Median blur (radius=5 pixels)

o Illumination correction (20 px)

o Auto threshold (Yen algorithm)

o Despeckle

o Morphological erosion (7 px)

o Particle finder (circularity range 0.0-0.4)

o Multi-node algorithm to arrange the time series based on slice numbers

o Calculate the intensity time series for the segmented vessel region

o Calculate the number of segmented objects per time point to check the segmentation

o Pass the results to the LSEC analysis compartment

(iii) Hepatocyte analysis:

o Median blur (radius=5 pixels)

o Illumination correction (20 px)

o Auto threshold (Li algorithm)

o Despeckle

o Morphological erosion (1 px)

o Morphological skeletonize

o Particle finder (size range 102-106)

o Multi-node algorithm to arrange the time series based on slice numbers

o Calculate the intensity time series for the segmented vessel region

o Calculate the number of segmented objects per time point to check the segmentation

(iv) Canaliculi analysis

o Median blur (radius=5 pixels)

o Illumination correction (20 px)

o Auto threshold (Li algorithm)

o Despeckle

o Morphological erosion (1 px)

o Skeletonize

o Particle finder (no filtering)

o Multi-node algorithm to arrange the time series based on slice numbers

o Calculate the intensity time series for the segmented vessel region

o Calculate the number of segmented objects per time point to check the segmentation

(v) LSEC analysis:

o Take inputs from vessel analysis and file handler (fluorescence image)

o Illumination correction of fluorescence image (20 px)

o Create mask from segmented vessel image

o Morphological dilation (7 px)

o Mask fluorescence image with segmented vessel image

o Auto threshold (RenyiEntropy algorithm)

o Particle finder (no filtering)

o Multi-node algorithm to arrange the time series based on slice numbers

o Calculate the intensity time series for the segmented vessel region

o Calculate the number of segmented objects per time point to check the segmentation

5.3 Confrontation assays
The interaction between alveolar macrophages and fungal spores was examined as described in earlier

research24,26,27. The macrophages and fungal spores were identified by label-free segmentation

algorithms, whereas counterstained fungi were identified by fluorescence labeling19,26,27. The workflow

was parallelized to segment labeled and unlabeled cells and spores separately. In addition, classical

and deep learning—based approaches of the macrophage segmentation algorithms were also

organized into separate parallel compartment groups (Supplementary Figure 4). The essential nodes

consisted of Hessian filtering to identify unlabeled macrophages and fungal spores, background

correction with appropriate parameters, thresholding steps, and fine-tuned morphological operators.

Here the "Define multiple parameters" node was of high importance by allowing to test many

parameters in one run. This special node allows the definition of one or more parameters that will be

chosen to fit a processing node, with each parameter allowed to be given any number of values to be

tested, and then connected to the corresponding processing node. For example, when testing various

thresholding methods, a “Define multiple parameters” node was set up to contain the parameter

"Method" with values set to the seventeen methods provided by ImageJ. The node was then plugged

into an "Auto threshold 2D " node to provide an overview of the effectiveness of all seventeen methods

on the test images in just one process. The outcome of the analysis consists of phagocytic measures

and of segmented images of all participants (host cells, phagocytosed, adherent, and free pathogens,

phagocytosing, and passive macrophages), see Figure 1c. For the classification of the segmented

objects, ROI-analysis nodes were developed; these enable the quantification of ROI overlap, e.g.,

between host cells and fungi to identify phagocytosed spores. A set of the ROI comparison nodes were

arranged into a separate compartment "Analyze ROI", followed by a set of nodes to calculate the

various phagocytosis measures arranged in the compartment "Summarize ROIs". For the deep

learning—based segmentation of the macrophages, the recently published Cellpose9 method was fully

integrated into JIPipe. The Cellpose-related nodes include "Cellpose" (to apply the Cellpose model

either in its original form, or after transfer learning, or following training from scratch); "Cellpose

training" (for transfer learning and training a model from the beginning); "Import Cellpose model" and

"Import Cellpose size model" to read in an already trained model for predefined size or for trained

object size, respectively. Using Cellpose via these JIPipe nodes vastly simplifies the workflow building

process, which is of great advantage for those with little experience in applying Deep Learning methods

in image analysis.

Supplementary Figure 4 | Compartment graph of the confrontation assay analysis protocol, designed to quantify host-
pathogen interactions. For the node arrangement within individual compartments, see the supplied JIP project file "
ConfrontationAssay.jip" and the detailed nodes map “compartments-figure-confrontation.png” in Supplementary Materials.

In the example provided here, we limited the analysis to the “LabeledHosts_LabeledPathogens”

dataset, which contained images where both the immune cells (hosts) and the fungal spores

(pathogens) were imaged not only in transmitted light modality, but also with fluorescence microscopy

using specific labeling of the assay components. The images are then read into memory with the

“Import image” node, and the channels are separated before passing the data into the output node.

As shown in Supplementary Figure 4, the output node is connected to the subsequent five

segmentation compartments: i) antibody-labeled hosts (“Red”), ii) FITC-labeled pathogens (“Green”),

iii) calcofluor white (CFW)-labeled pathogens (“Blue”), iv) transmitted light images (“TL”), and v) the

deep-learning based segmentation workflow (“CellPose”).

In detail:

(i) Images of the labeled host cells are processed as follows:

o Gaussian blur (radius=3 pixels)

o Internal gradient (25 px)

o Contrast enhancement

o Background subtraction (Rolling Ball, 50 px)

o Auto threshold (Triangle algorithm)

o Morphological closing (2 px)

o Morphological hole filling

o Watershed transformation

o Morphological erosion (5 px)

o Particle finder to identify macrophages by size (3000-30000) and circularity (0.1-1.0)

“Define multiple parameters” nodes were used originally to test a range of rolling ball radii, and a

series of automated thresholding algorithms, respectively.

(ii) Images of the FITC-labeled fungi are processed as follows:

o Remove outliers (radius=20 pixels, threshold=5)

o Background subtraction (Rolling Ball, 22 px)

o Auto threshold (Triangle algorithm)

o Watershed transformation

o Particle finder to identify fungal spores by size (100-3000) and circularity (0.4-1.0)

Two “Define multiple parameters” nodes were used originally to test a range of rolling ball radii,

and a series of automated thresholding algorithms, respectively.

(iii) Images of the CFW-labeled fungal cells are processed as follows:

o Remove outliers (radius=20 pixels, threshold=5)

o Contrast enhancement

o Background subtraction (Rolling Ball, 22 px)

o Auto threshold (Li algorithm)

o Watershed transformation

o Particle finder to identify fungal spores by size (100-3000) and circularity (0.4-1.0)

Two “Define multiple parameters” nodes were used originally to test a range of rolling ball radii,

and a series of automated thresholding algorithms, respectively.

(iv) Images of the TL images of hosts and pathogens are processed as follows:

o Laplacian sharpening with a 3x3 kernel

o Hessian filtering using the smallest eigenvalues with smoothing of 3 pixels

o Gaussian blur (radius=5 px)

o Auto threshold (Huang algorithm)

o Annotating with maximum and minimum threshold values

o Morphological closing (2 px)

o Morphological hole filling

o Remove outliers (radius=10 pixels, threshold=20)

o Remove outliers (radius=20 pixels, threshold=20)

o Watershed transformation

o Morphological erosion (2 px)

o Particle finder to identify macrophages by size (3000-30000) and circularity (0.1-1.0)

(v) The TL and fluorescence images of hosts and pathogens were also segmented using the

default trained networks of the Cellpose environment15. Here no pre- or post-processing

steps were applied. Rather, the outcome from the Cellpose node provided the ROI lists of

the hosts and pathogens, and the lists were passed on to the output node, from where

they were directed to the “AnalyseROICellpose” compartment (see below).

The segmented images are used to generate lists of regions of interest (ROIs) that describe the

locations of the host cells, as well as the green-labeled and blue-labeled pathogens. These ROIs are

further examined in the “AnalyseROI” and “AnalyseROICellpose” compartments (the latter one applied

for the Cellpose-based analysis) via testing the overlap between pairs of the three object groups to

identify associated fungal spores (i.e., fungi that are interacting with a host cell based on their

overlapping ROIs), adherent fungi (associated pathogens that are CFW-positive) and phagocytosed

fungi (associated fungi that are not adherent, i.e. CFW-negative). In addition, phagocytosing host cells

are identified as objects that contain at least one phagocytosed pathogen. In the last step, the

“SummarizeROI” or “SummarizeROICellpose” compartments calculate the four phagocytic measures12,

using the “Modify tables” node that contain the calculations in a Python script.

5.4 Track analysis of unlabeled nematodes
When beneficial soil fungi are consumed by nematodes (earth worms), a way to protect the soil quality

is to provide the fungi with symbiotic bacteria that produce agents that are toxic for the worms but

not for the fungi, thus protecting the soil-enhancing fungi from the nematodes28. JIPipe was used to

segment and track the nematodes, and to calculate a viability ratio (the total footprint area covered

by a worm divided by the area of the worm averaged over time) that characterized the efficiency of

various symbiotic bacteria to protect the fungi (Supplementary Figure 5). JIPipe was extended for this

project with a node to find connected components that allowed the analysis of time series

experiments. The outcome produced by the project included the merged outlines of every worm

(Figure 1c), the binarized nematodes and the outline of one animal at a selected number of time points,

as well as the footprint of a single worm superimposed onto the original images (Figure 1c). The

postprocessing steps included the calculation of the worm areas and footprints (i.e., the collection of

pixels that were touched by the worm during the course of the time series), and measuring the ratio

between the footprint and the individual worm area, which measures the motility of the animal; the

higher the ratio, the more motile the worm. The time-series images were analyzed by the JIP protocol

“Nematodes.jip” (see Supplementary Materials).

Supplementary Figure 5 | Compartment graph of the kinetic analysis workflow designed to characterize nematodes
according to their motility. For the node arrangement within individual compartments, see the supplied JIP project file
"Nematodes.jip" and the detailed nodes map “compartments-figure-nematodes.png” in Supplementary Materials.

The workflow was based on principles similar to those shown in the previous chapters. The processing

consisted of three compartments: i) file handling, ii) worm segmentation, iii) quantification and

visualization.

In detail:

(i) Images were read into memory and the data table was annotated as described in

Supplementary Information 4.1

(ii) Worm segmentation:

o Splitting stacks to reduce data size for easier testing (optional)

o Gaussian blur (3 px)

o Auto threshold (Triangle algorithm)

o Morphological closing (7 px, diamond)

o Morphological hole filling

o Particle finder (minimum size 4000 px)

o Pass the results to the Quantification and visualization compartment

(iii) Quantification and visualization:

o Time tracking individual worms based on the “#Component” annotation

o Create and measure worm area with logical OR

o Create total area per worm using the “Total” annotation

o Calculate total area over individual worm area

o Recreate time series using the “Slice” annotation in ascending order

o Calculate average, standard deviation and count of area ratios

5.5 Kidney status check via glomeruli counting
Kidney diseases, e.g. nephrotoxic nephritis lead to a diminished function of the kidney tissue, indicated

by the reduced number of glomeruli29. Light sheet microscopy can be utilized to image whole kidneys

in 3D. These images were generated by staining the glomeruli, the functional units of the kidney. Due

to the high dimensionality of the data and the number of glomeruli that can range up to 16000, manual

counting is highly time-consuming and impractical. Therefore, our group already developed fully

automated solutions in Python and C++30. The disadvantage of these tools is that they require

programming to be adapted and improved. Here, we exemplify how JIPipe can be used to apply an

equivalent analysis, but without the need for programming (Supplementary Figure 6). For this

example, we reduced the size of the image stack from 700 to 20, which even non-workstation

computers can process without computing and memory capacity problems. The outcome of the JIPipe

analysis included the identification of individual glomeruli (Figure 1c) and the outline of the entire

kidney tissue. We provide the JIPipe protocol file, as well as the input data in the Supplementary

Materials. Here we also demonstrate the use of a single-compartment configuration of a JIPipe

workflow, combing all processing and visualization steps into a single space.

Supplementary Figure 6 | Compartment graph of the glomeruli analysis workflow designed kidney light sheet microscopy
images. For the node arrangement within individual compartments, see the supplied JIP project file "Kidney.jip" and the
detailed nodes map “compartments-figure-glomeruli.png” in Supplementary Materials.

The processing workflow is organized into three logical steps: i) file handling: these are nodes for

reading and organizing the input images, which are then passed on to the processing nodes

ii) glomeruli segmentation nodes; iii) tissue segmentation and quantification nodes; iv) quantification

of glomeruli; v) visualization nodes: the segmented ROIs are quantified and plots are generated. These

plots include glomerular number bar diagrams and a histogram of the glomerular volumes per kidney.

The final plots of the tissue and glomeruli outlines can also be directly accessed via bookmarks. To

execute or visit the bookmarked nodes, go to Project → Project overview and find the bookmarks on

the right side in the “Bookmarks” tab. Click on any bookmark and choose either “Run” (to execute the

pipeline up to that node, inclusive), or “Go to bookmark” to visit the node directly.

In detail:

(i) File handling:

o Images are provided as list of folders, containing the slices of an image stack. JIPipe

converts these user-provided folders into a managed path data structure.

o Folders are annotated with their name that will be used in the pipeline to distinguish

images from each other

o An “Import image stack” node is used to load the slices contained inside each folder

into a 3D image. Annotations are preserved.

o The imported images are passed to the segmentation nodes.

(ii) Glomeruli segmentation:

o Input images are received from the output of the file handling nodes

o White Top Hat (radius = 5, disk shape) is applied

o Auto threshold (Otsu method)

o Morphological opening (radius = 2, disk shape)

o “Find Particles 2D” (default settings)

o “Split into connected components” is applied to the set of 2D ROIs generated by the

particle finder. This node applies a 3D connected components algorithm and groups

2D ROIs of the same component into dedicated ROI lists. Each output ROI list is

annotated with an identifier and corresponds to one glomerulus.

o The glomeruli are passed to the quantification and visualization nodes

(iii) Tissue segmentation and quantification:

o Input images are received from the output of the file handling nodes

o Median blur (radius = 1) is applied

o Auto threshold (Default method)

o Morphological closing (radius = 20, disk shape)

o Morphological hole filling

o Find particles (default settings)

(iv) Quantification of glomeruli:

o “Extract ROI statistics” (Extracted measurements = “Area”) creates a table with one

row per 2D ROI containing its area

o “Integrate table columns” (Input column = Area, Function = Sum, Output column =

Volume) calculates the volume in px³ for each glomerulus. Its output is a table with

one row

o “Add annotations as columns” (Annotation name filter: value == "#Component") adds

the glomerulus identifier into each table

o “Merge table rows” (Data batches/Grouping method = “Custom”, Data

batches/Custom grouping columns = “#Dataset”) merges all quantified results of the

same kidney into one table

o “Filter table” (Volume >= 28 AND Volume <= 2300) removes glomeruli outside the

expected volume range

(v) Visualization

o The distribution of glomerular volumes is plotted via “Plot tables” (Plot type =

Histogram, Value = Volume) plots the “Volume” column as histogram

o The tissue is visualized via a “Convert ROI to RGB” node that consumes the extracted

tissue ROI and the raw input image enhanced via a “Histogram-based contrast

enhancer”. A “Change ROI properties” node modifies the ROI to be drawn in green

o A combined visualization is generated as follows:

o The glomerular ROIs are modified via “Change ROI properties” to be drawn as yellow

lines

o “Merge ROI lists” combines the glomerular ROIs and the tissue ROI into a single list

o A “Convert ROI to RGB” node overlays the glomeruli and tissue ROIs on top of the

tissue

6 JIPipe user interface and data model
Here we focus on key features of the JIPipe user interface and explain how our software implements a

scalable data model. The full organization of our software can be retrieved from the Supplementary

Material as well as from the JIPipe website (http://www.JIPipe.org/). Familiarizing with the user

interface is assisted by numerous training videos that can be accessed at the website as well. The

central component of the JIPipe GUI is a graph that contains all functional units in form of nodes (see

Supplementary Figure 7). Each of these nodes has one or multiple input and output slots that

represent the data entered and produced by this functional unit (see Supplementary Figure 8). To

create a pipeline, these slots are connected via edges to indicate a transfer of data from one node’s

output to another node’s input. Outputs can be connected to multiple inputs, e.g., for creating

branches to apply different methods or to generate visualizations of intermediate steps.

http://www.jipipe.org/

Supplementary Figure 7 | JIPipe graph editor UI. ① The central graph area where operational nodes can be placed by the

user. ② Graphical representation of a node in JIPipe. Nodes have one or multiple input and output slots (grey areas within

each node). ③ Output slots can be connected to inputs via edges (gray line).

Supplementary Figure 8 | Graphical representation of a node with two inputs and one output slot. Only one input is

connected (grey line). ① Inputs of the node are in the top row. ② The bottom row contains the node’s outputs. ③ Users

can customize the label names. These are displayed in an italic style. ④ Each slot displays its supported data type as icon.

⑤ The middle row contains the customizable node name, its icon representation, and a button to run the node and its

predecessors. ⑥ Various nodes allow the creation of custom slots by clicking the “+” button.

Users are able to freely compartmentalize their pipelines (see Supplementary Figure 9), for example

into preprocessing, segmentation, and postprocessingg. Within compartments, users can add

additional nodes via a menu and arrange them freely.

Supplementary Figure 9 | Compartmentalization of pipelines. Users can use a compartment graph to organize a pipeline.
Compartments are created and connected via a dedicated compartment graph (left). Each node in this structure contains a
space where functional nodes can be placed (right).

JIPipe provides over 1000 nodes that include tools for data management and generation; mapping the

file and folder structure of the data; annotation tools to keep track of file origins and experimental

conditions; image processing nodes; ROI management; table processing and filtering; nodes to export

the results in various formats and structures; and a group of additional miscellaneous nodes to add

utilities to the system. Multiple ways are provided to search for specific nodes (see Supplementary

Figure 10), e.g., by name, functionality, and compatibility to the preceding node. According to the

symbiotic principle outlined earlier, these nodes can also be directly accessed from ImageJ.

Supplementary Figure 10 | GUI functions to add nodes into a pipeline. ① Nodes are organized into a menu. ② New and

existing nodes can be searched via a search bar. ③ Users who are familiar with other visual programming languages find a

toolbox where nodes can be dragged into the graph. ④ Each input and output provide an “Algorithm finder” feature that

lists all compatible sources or targets based on their data type.

Nodes can be intuitively connected into a pipeline by creating edges between them via using the

mouse. Alternatively, an algorithm finder can be used to locate nodes that match the data. Unique to

JIPipe, all nodes are self-documenting, meaning that users can infer the functionality of the nodes and

their slots without referencing a manual (see Supplementary Figure 8). The nodes are fully

customizable by the user, thus simplifying the execution of multi-parameter sets.

A comprehensive context-sensitive documentation of all nodes and their parameters can be accessed

any time. Alternatively, JIPipe includes complete documentations for nodes and data types that can be

exported to HTML, PDF, or text files (see Supplementary Figure 11). To provide users of more complex

nodes with a starting point, we implemented minimal examples that also reveal syntax details.

Additionally, JIPipe nodes are capable of automated parameter validation to warn users about possibly

invalid inputs.

Supplementary Figure 11. | Integrated documentation. ① The node parameter editor provides access to a brief description

of the selected node. Parameter documentations are context sensitive and displayed after hovering the parameter control.

② The “Help” menu allows access to full documentations for nodes and data types.

A pipeline is executed by clicking the “Run” button, which will automatically validate the project, and

offer options for optimization and multi-threading. The user only has to set an output directory and

confirm the settings. JIPipe will automatically execute the project and store all results in a standardized

format, together with the parameters, as a full project file (see Supplementary Figure 1. Afterwards,

the results are displayed in a separate interface that allows to review and export the data (see

Supplementary Figure 12). Due to the standardized output format, JIPipe can open existing results in

this viewer, even if the analysis was not applied on the same machine. To work on data interactively,

JIPipe allows the execution of a selected node where results are cached inside the random-access

memory (RAM) to be accessed later from within the GUI and displayed in the appropriate tool, e.g.,

images are displayed by ImageJ or other tools, or re-used by another JIPipe run. To improve the

usability of caching, JIPipe comes with cache-aware viewers for common ImageJ data that

automatically update themselves to the newest cached versions, display metadata, and allow to

browse through all results efficiently.

Supplementary Figure 12 | Result analysis GUI. ① The interface is opened after a successful pipeline run. Alternatively,

JIPipe can open existing directories. ② Results are organized by their compartment, node, and output slot. On selecting an

entry, the corresponding data is displayed. ③ Data is displayed as table, containing information about the compartment,

node, slot, index within the data table. Text and data annotations are displayed as well. The main data item is previewed.

JIPipe organizes data into tables that are associated to each slot (see Supplementary Figure 13a). Each

table has one column containing binary data of a type defined by the slot, and an arbitrary number of

metadata columns containing strings or other data. There are various nodes available that generate or

modify the set of metadata. For example, it can be used to track biological conditions, dataset

identifiers, or image properties. The flexibility of this approach allows the easy management of

research data and assists users in finding and reproducing data and analysis details according to the

FAIR principles31. Generally, nodes iterate over the rows of the table and generate one result per row;

this strategy also provides the opportunity to parallelize computationally expensive workloads.

Another benefit of this design is zero-cost up- and downscaling: Users only need to modify the set of

input files or folders to change the scale of the analysis without the need for updating the pipeline

structure. During the processing, metadata is conserved. These annotations are helpful for the

postprocessing and review steps but are also actively used by various algorithms that iterate through

multiple inputs or merge data (see Supplementary Figure 13b).

Supplementary Figure 13 | JIPipe data model. (a) Each node in a pipeline (right) has multiple inputs and output slots (gray
box). Each slot contains a table of binary data (left), annotated with additional string columns (e.g., “Experiment”,
“Threshold”). A connection between two slots (black lines) leads to the data being passed to the input and processed row-
wise (green arrows). The annotations are preserved. (b) A node with multiple inputs (Figure 4a, “Create RGB image”) groups
data (left) by testing for the equivalence of annotation sets (green highlight). The resulting grouped table (right) is processed
row-wise.

7 Online training and documentation resources
We already provide a substantial amount of online documentation that simplify the process of

adapting JIPipe into a bioimage analysis workflow, develop plugins and extensions, and to connect our

software to third-party tools.

7.1 User guide and tutorials
To provide resources for new users of JIPipe, we created both step-by-step tutorials in text and video

form, as well as documentations that guide users through the features of the user interface. As users

of ImageJ might be new to the concept of visual programming and are possibly unaware of the benefits

gained by utilizing our software, we created a video abstract that explains these aspects within three

minutes (see https://www.youtube.com/watch?v=Zyl52bluWYI). All tutorials are listed on

https://www.jipipe.org/tutorials/ and already include the following items:

• A set of updated and short tutorials that explain the usage of various JIPipe functions

o Basic tutorials (23 items): https://www.jipipe.org/tutorials/basic/

o Intermediate tutorials (4 items): https://www.jipipe.org/tutorials/intermediate/

o Advanced tutorials (3 items): https://www.jipipe.org/tutorials/advanced/

o JIPipe for teaching: https://www.jipipe.org/tutorials/features/teaching/

o Using cellpose (2 parts): https://www.jipipe.org/tutorials/features/cellpose/

• A step-by-step tutorial guiding through a basic image analysis task with batch processing

o Text (25 steps): https://www.jipipe.org/tutorials/old/analysis/

o Video (9:25 minutes): https://www.jipipe.org/tutorials/videos/analysis_video/

• A comprehensive tutorial that compares the analysis workflow between ImageJ and JIPipe

o Video (22:36 minutes): https://www.jipipe.org/tutorials/videos/jipipe-for-imagej-

users/

• A short overview of the JIPipe user interface

o Video (4:35 minutes): https://www.jipipe.org/tutorials/videos/guide-user-interface/

• A brief explanation of JIPipe’s data caching feature

o Video (4:16 minutes): https://www.jipipe.org/tutorials/videos/guide-data-caches/

• An explanation of the graph editor features

https://www.youtube.com/watch?v=Zyl52bluWYI
https://www.jipipe.org/tutorials/
https://www.jipipe.org/tutorials/basic/
https://www.jipipe.org/tutorials/intermediate/
https://www.jipipe.org/tutorials/advanced/
https://www.jipipe.org/tutorials/features/teaching/
https://www.jipipe.org/tutorials/features/cellpose/
https://www.jipipe.org/tutorials/old/analysis/
https://www.jipipe.org/tutorials/videos/analysis_video/
https://www.jipipe.org/tutorials/videos/jipipe-for-imagej-users/
https://www.jipipe.org/tutorials/videos/jipipe-for-imagej-users/
https://www.jipipe.org/tutorials/videos/guide-user-interface/
https://www.jipipe.org/tutorials/videos/guide-data-caches/

o Video (3:48 minutes): https://www.jipipe.org/tutorials/videos/guide-graph-editor/

• A tutorial that explains the setup of a batch analysis and the backgrounds of JIPipe’s data

management

o Video (7:47 minutes): https://www.jipipe.org/tutorials/videos/guide-batch-

processing/

• A guide through the design of a custom node via the JIPipe GUI:

o Text (10 steps): https://www.jipipe.org/tutorials/old/extension/

Information that is not covered by our tutorials is made available in the text documentation (see

https://www.jipipe.org/documentation/) that covers the following topics:

• The basic concepts behind JIPipe

o The basic concepts of visual programming with focus on users familiar to ImageJ:

https://www.jipipe.org/documentation/basic-concepts/visual-programming/

o An overview of the batch processing functionality with illustrations to explain the

concepts behind it:

https://www.jipipe.org/documentation/basic-concepts/batch-processing/

• Information about important GUI and JIPipe features related to designing pipelines

o An overview of the graph editor user interface:

https://www.jipipe.org/documentation/create-pipelines/pipeline-editor/

o A detailed explanation of JIPipe’s expression system with illustrations, examples, and

a list of operators and their precedence:

https://www.jipipe.org/documentation/create-pipelines/expressions/

o An explanation of the purpose of graph compartments:

https://www.jipipe.org/documentation/create-pipelines/compartments/

o A guide through the node grouping functionality:

https://www.jipipe.org/documentation/create-pipelines/groups/

o An explanation on the usage of loop nodes:

https://www.jipipe.org/documentation/create-pipelines/loops/

• Guides relating to running pipelines and reviewing results

o A brief guide on how to run a pipeline:

https://www.jipipe.org/documentation/run-pipelines/run/

o A guide through the result viewing component:

https://www.jipipe.org/documentation/run-pipelines/result-analysis/

o An overview of JIPipe’s data storage format:

https://www.jipipe.org/documentation/run-pipelines/connect-external-software/

o Information on how users can cache data:

https://www.jipipe.org/documentation/run-pipelines/quick-run/ and

https://www.jipipe.org/documentation/run-pipelines/cache/

• Information about the ImageJ integration and how to run JIPipe nodes inside ImageJ:

https://www.jipipe.org/documentation/imagej-integration/

• An overview of JIPipe’s plugin list GUI:

https://www.jipipe.org/documentation/plugins/

• An overview of all functionalities included in the standard JIPipe distribution

o The ImageJ integration library:

https://www.jipipe.org/documentation/standard-library/imagej-integration/

o A guide on how to utilize macro nodes:

https://www.jipipe.org/documentation/standard-library/macro-node/

https://www.jipipe.org/tutorials/videos/guide-graph-editor/
https://www.jipipe.org/tutorials/videos/guide-batch-processing/
https://www.jipipe.org/tutorials/videos/guide-batch-processing/
https://www.jipipe.org/tutorials/old/extension/
https://www.jipipe.org/documentation/
https://www.jipipe.org/documentation/basic-concepts/visual-programming/
https://www.jipipe.org/documentation/basic-concepts/batch-processing/
https://www.jipipe.org/documentation/create-pipelines/pipeline-editor/
https://www.jipipe.org/documentation/create-pipelines/expressions/
https://www.jipipe.org/documentation/create-pipelines/compartments/
https://www.jipipe.org/documentation/create-pipelines/groups/
https://www.jipipe.org/documentation/create-pipelines/loops/
https://www.jipipe.org/documentation/run-pipelines/run/
https://www.jipipe.org/documentation/run-pipelines/result-analysis/
https://www.jipipe.org/documentation/run-pipelines/connect-external-software/
https://www.jipipe.org/documentation/run-pipelines/quick-run/
https://www.jipipe.org/documentation/run-pipelines/cache/
https://www.jipipe.org/documentation/imagej-integration/
https://www.jipipe.org/documentation/plugins/
https://www.jipipe.org/documentation/standard-library/imagej-integration/
https://www.jipipe.org/documentation/standard-library/macro-node/

o Important remarks regarding the file system nodes:

https://www.jipipe.org/documentation/standard-library/filesystem/

o A guide through the multi-parameter feature supported by many nodes:

https://www.jipipe.org/documentation/standard-library/multi-parameter/

o Remarks about the usage of data annotations:

https://www.jipipe.org/documentation/standard-library/annotations/

o A guide through the plotting features included in JIPipe:

https://www.jipipe.org/documentation/standard-library/plots-tables/

o An overview of the integrated Jython and Python wrappers:

https://www.jipipe.org/documentation/standard-library/jython/,

https://www.jipipe.org/documentation/standard-library/python/,

https://www.jipipe.org/documentation/standard-library/python/api/

o Information about the R integration:

https://www.jipipe.org/documentation/standard-library/r-integration/

o An overview of the Cellpose nodes and information about how they are utilized:

https://www.jipipe.org/documentation/standard-library/cellpose/

• Information about the creation custom JIPipe extensions via a graphical interface:

https://www.jipipe.org/documentation/create-json-extensions/

• The usage of JIPipe within a command line interface:

https://www.jipipe.org/documentation/cli/

7.2 Java API documentation
To aid with the continued development of JIPipe and to facilitate the creation of new extensions, we

published documentation about JIPipe’s Java API. This includes the automatically generated JavaDocs

that contain all classes, methods, and packages (see https://www.jipipe.org/apidocs/index.html), but

also detailed guides on how to setup an extension project, create nodes, data types, parameters, and

other features:

• The setup of a Java Maven project that provides features for JIPipe:

https://www.jipipe.org/documentation-java-api/create-extension/

• An overview of the node type classes, including an example node implementation:

https://www.jipipe.org/documentation-java-api/algorithm/

o Documentation on the development of iterative multi-input nodes:

https://www.jipipe.org/documentation-java-api/algorithm/iterating-algorithms/

o An alternative multi-input node type that merges multiple data items:

https://www.jipipe.org/documentation-java-api/algorithm/merging-algorithms/

o Remarks regarding the modification of node input and outputs:

https://www.jipipe.org/documentation-java-api/algorithm/slot-configuration/

o A basic guide to defining node parameters:

https://www.jipipe.org/documentation-java-api/algorithm/parameters/

o Guidelines for creating nodes that support parallelized workloads:

https://www.jipipe.org/documentation-java-api/algorithm/parallelization/

o Definition of node types that do not have a one-to-one relationship with a Java class:

https://www.jipipe.org/documentation-java-api/algorithm/custom-info/

o A guide on creating interactive buttons in parameter lists:

https://www.jipipe.org/documentation-java-api/algorithm/context-actions/

• An overview on how the Java API is used to create a new data type:

https://www.jipipe.org/documentation-java-api/data-type/

https://www.jipipe.org/documentation/standard-library/filesystem/
https://www.jipipe.org/documentation/standard-library/multi-parameter/
https://www.jipipe.org/documentation/standard-library/annotations/
https://www.jipipe.org/documentation/standard-library/plots-tables/
https://www.jipipe.org/documentation/standard-library/jython/
https://www.jipipe.org/documentation/standard-library/python/
https://www.jipipe.org/documentation/standard-library/python/api/
https://www.jipipe.org/documentation/standard-library/r-integration/
https://www.jipipe.org/documentation/standard-library/cellpose/
https://www.jipipe.org/documentation/create-json-extensions/
https://www.jipipe.org/documentation/cli/
https://www.jipipe.org/apidocs/index.html
https://www.jipipe.org/documentation-java-api/create-extension/
https://www.jipipe.org/documentation-java-api/algorithm/
https://www.jipipe.org/documentation-java-api/algorithm/iterating-algorithms/
https://www.jipipe.org/documentation-java-api/algorithm/merging-algorithms/
https://www.jipipe.org/documentation-java-api/algorithm/slot-configuration/
https://www.jipipe.org/documentation-java-api/algorithm/parameters/
https://www.jipipe.org/documentation-java-api/algorithm/parallelization/
https://www.jipipe.org/documentation-java-api/algorithm/custom-info/
https://www.jipipe.org/documentation-java-api/algorithm/context-actions/
https://www.jipipe.org/documentation-java-api/data-type/

o Explanations on how to create user-selectable data importers:

https://www.jipipe.org/documentation-java-api/data-type/result-ui/

o Documentation on implementing result previews:

https://www.jipipe.org/documentation-java-api/data-type/result-preview/

• A guide through the creation of a new parameter type:

https://www.jipipe.org/documentation-java-api/parameter-type/

• Interfacing with JIPipe through its Java API to run nodes, pipelines, and projects:

https://www.jipipe.org/documentation-java-api/usage-in-java/

7.3 Data and JSON API documentation
To store data and projects, JIPipe utilizes JSON files that follow a standardized format. This includes

the format for projects (see https://www.jipipe.org/documentation-json-api/project/) and for non-

Java extensions (see https://www.jipipe.org/documentation-json-api/json-extension/). A similar

standardization is applied in the storage of output files to allow automated data reading and writing

operations. Its highest-order implementation is the standardized format for whole-pipeline and is

described in https://www.jipipe.org/documentation-data-api/pipeline-output/. The format makes use

of the “data table” standard (see https://www.jipipe.org/documentation-data-api/data-table/) that

makes the automated reading and writing of data and metadata possible, due to the presence of a

standardized metadata file (“data-table.json”, see https://www.jipipe.org/documentation-json-

api/data-table/). Within the a data table directory, data items are stored in various directories that

contain hierarchies of files and folders that follow a standard defined by the data type definition in

Java (see https://www.jipipe.org/documentation-data-api/row-folder/). A list of available data types,

associated standards and properties is given in https://www.jipipe.org/documentation-data-api/data-

types/.

https://www.jipipe.org/documentation-java-api/data-type/result-ui/
https://www.jipipe.org/documentation-java-api/data-type/result-preview/
https://www.jipipe.org/documentation-java-api/parameter-type/
https://www.jipipe.org/documentation-java-api/usage-in-java/
https://www.jipipe.org/documentation-json-api/project/
https://www.jipipe.org/documentation-json-api/json-extension/
https://www.jipipe.org/documentation-data-api/pipeline-output/
https://www.jipipe.org/documentation-data-api/data-table/
https://www.jipipe.org/documentation-json-api/data-table/
https://www.jipipe.org/documentation-json-api/data-table/
https://www.jipipe.org/documentation-data-api/row-folder/
https://www.jipipe.org/documentation-data-api/data-types/
https://www.jipipe.org/documentation-data-api/data-types/

8 References
1. Berthold, M. R. et al. KNIME: The Konstanz Information Miner. in Studies in Classification, Data

Analysis, and Knowledge Organization (GfKL 2007) (Springer, 2007).

2. de Chaumont, F. et al. Icy: an open bioimage informatics platform for extended reproducible

research. Nat. Methods 9, 690–696 (2012).

3. Cross, S. J. ModularImageAnalysis (MIA). (2022) doi:10.5281/zenodo.7016907.

4. Möller, B., Glaß, M., Misiak, D. & Posch, S. Mitobo-a toolbox for image processing and analysis. J.

Open Res. Softw. 4, (2016).

5. Gilles, J.-F. & Boudier, T. TAPAS: Towards Automated Processing and Analysis of multi-

dimensional bioimage data. Preprint at https://doi.org/10.12688/f1000research.26977.2 (2021).

6. Ollion, J., Cochennec, J., Loll, F., Escudé, C. & Boudier, T. TANGO: a generic tool for high-

throughput 3D image analysis for studying nuclear organization. Bioinformatics 29, 1840–1841

(2013).

7. Allan, C. et al. OMERO: flexible, model-driven data management for experimental biology. Nat.

Methods 9, 245–253 (2012).

8. Linkert, M. et al. Metadata matters: access to image data in the real world. J. Cell Biol. 189, 777–

782 (2010).

9. Haase, R. et al. CLIJ: GPU-accelerated image processing for everyone. Nat. Methods 17, 5–6

(2020).

10. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9,

676–682 (2012).

11. Meijering, E. FeatureJ. https://imagescience.org/meijering/software/featurej/.

12. Rueden, C. T. et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC

Bioinformatics 18, 529 (2017).

13. Pietzsch, T., Preibisch, S., Tomančák, P. & Saalfeld, S. ImgLib2—generic image processing in Java.

Bioinformatics 28, 3009–3011 (2012).

14. Legland, D., Arganda-Carreras, I. & Andrey, P. MorphoLibJ: Integrated library and plugins for

mathematical morphology with ImageJ. Bioinformatics 32, 3532–3534 (2016).

15. Thomas, L. S. V. & Gehrig, J. Multi-template matching: a versatile tool for object-localization in

microscopy images. BMC Bioinformatics 21, 44 (2020).

16. Rueden, C., Schindelin, J., Hiner, M. & Eliceiri, K. SciJava Common [Software]. (2016).

17. R Core Team. R: A language and environment for statistical computing. (2022).

18. Python. https://www.python.org/.

19. Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular

segmentation. Nat. Methods 18, 100–106 (2021).

20. Cutler, K. J., Stringer, C., Wiggins, P. A. & Mougous, J. D. Omnipose: a high-precision morphology-

independent solution for bacterial cell segmentation. bioRxiv 2021.11.03.467199 (2022)

doi:10.1101/2021.11.03.467199.

21. Svensson, C. M. et al. Coding of Experimental Conditions in Microfluidic Droplet Assays Using

Colored Beads and Machine Learning Supported Image Analysis. Small 15, 1802384 (2019).

22. Mahler, L. et al. Enhanced and homogeneous oxygen availability during incubation of

microfluidic droplets. RSC Adv. 5, 101871–101878 (2015).

23. Zang, E. et al. Real-time image processing for label-free enrichment of Actinobacteria cultivated

in picolitre droplets. Lab. Chip 13, 3707–3713 (2013).

24. Cseresnyes, Z., Kraibooj, K. & Figge, M. T. Hessian-based quantitative image analysis of host-

pathogen confrontation assays. Cytometry A 93, 346–356 (2018).

25. Muljajew, I. et al. Stealth Effect of Short Polyoxazolines in Graft Copolymers: Minor Changes of

Backbone End Group Determine Liver Cell-Type Specificity. ACS Nano 15, 12298–12313 (2021).

26. Hassan, M. I. A. et al. The geographical region of origin determines the phagocytic vulnerability

of Lichtheimia strains. Environ. Microbiol. 21, 4563–4581 (2019).

27. Cseresnyes, Z., Hassan, M. I. A., Dahse, H.-M., Voigt, K. & Figge, M. T. Quantitative Impact of Cell

Membrane Fluorescence Labeling on Phagocytosis Measurements in Confrontation Assays.

Front. Microbiol. 11, 1193 (2020).

28. Büttner, H. et al. Bacterial endosymbionts protect beneficial soil fungus from nematode attack.

Proc. Natl. Acad. Sci. U. S. A. 118, 2110669118 (2021).

29. Klingberg, A. et al. Fully Automated Evaluation of Total Glomerular Number and Capillary Tuft

Size in Nephritic Kidneys Using Lightsheet Microscopy. J. Am. Soc. Nephrol. JASN 28, 452–459

(2017).

30. Gerst, R., Medyukhina, A. & Figge, M. T. MISA++: A standardized interface for automated

bioimage analysis. SoftwareX 11, (2020).

31. Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and

stewardship. Sci. Data 2016 31 3, 1–9 (2016).

